Package: bayesWatch (via r-universe)

August 24, 2024

Type Package

Title Bayesian Change-Point Detection for Process Monitoring with Fault Detection

Version 0.1.3

Date 2024-01-27

Maintainer Alexander C. Murph <murph290@gmail.com>

Description Bayes Watch fits an array of Gaussian Graphical Mixture Models to groupings of homogeneous data in time, called regimes, which are modeled as the observed states of a Markov process with unknown transition probabilities. In doing so, Bayes Watch defines a posterior distribution on a vector of regime assignments, which gives meaningful expressions on the probability of every possible change-point. Bayes Watch also allows for an effective and efficient fault detection system that assesses what features in the data where the most responsible for a given change-point. For further details, see: Alexander C. Murph et al. (2023) <arXiv:2310.02940>.

Copyright file COPYRIGHTS

License GPL-3

Imports Rcpp (>= 1.0.7), parallel (>= 3.6.2), Matrix, Hotelling, CholWishart, ggplot2, gridExtra (>= 0.9.1), BDgraph, methods, MASS, stats, ess

LinkingTo Rcpp, RcppArmadillo, RcppEigen, Matrix, CholWishart, BH

Depends R (>= 3.5.0)

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Repository https://sirmurphalot.r-universe.dev

RemoteUrl https://github.com/sirmurphalot/bayeswatch

RemoteRef HEAD

RemoteSha 8e6bb7de74535f5521792a63992046bc4d724af8

2 bayeswatch

Contents

bayeswatch	- 2
detect_faults	5
full_data	6
get_point_estimate	
plot.bayesWatch	
print.bayesWatch	7

Index 8

bayeswatch

Fit a bayesWatch object.

Description

Main method of package. MCMC sampling for change-point probabilities with fault detection according to the model by Murph et al. 2023. Creates a bayesWatch object for analysis of change-points.

Usage

```
bayeswatch(
  data_woTimeValues,
  time_of_observations,
  time_points,
  variable_names = 1:ncol(data_woTimeValues),
  not.cont = NULL,
  iterations = 100,
  burnin = floor(iterations/2),
  lower_bounds = NULL,
  upper_bounds = NULL,
  ordinal_indicators = NULL,
  list_of_ordinal_levels = NULL,
  categorical_indicators = NULL,
  previous_states = NULL,
  previous_model_fits = NULL,
  linger_parameter = 500,
 move_parameter = 100,
  g.prior = 0.2,
  set_G = NULL,
 wishart_df_initial = 1500,
  lambda = 1500,
  g_sampling_distribution = NULL,
  n.cores = 1,
  scaleMatrix = NULL,
  allow_for_mixture_models = FALSE,
  dirichlet_prior = 0.001,
```

bayeswatch 3

```
component_truncation = 7,
      regime_truncation = 15,
      hyperprior_b = 20,
      model_params_save_every = 5,
      simulation_iter = NULL,
      T2\_window\_size = 3,
      determining_p_cutoff = FALSE,
      prob_cutoff = 0.5,
      model_log_type = "NoModelSpecified",
      regime_selection_multiplicative_prior = 2,
      split_selection_multiplicative_prior = 2,
      is_initial_fit = TRUE,
      verbose = FALSE
    )
Arguments
    data_woTimeValues
                      matrix. Raw data matrix without datetime stamps.
    time_of_observations
                      vector. Datetime stamps for every data instance in data woTimeValues.
                      vector. Time points that mark each 'day' of time. Range should include every
    time_points
                     datetime in time of observations.
    variable_names vector. Vector of names of columnsof data_woTimeValues.
    not.cont
                      vector. Indicator variable as to which columns are discrete.
    iterations
                     integer. Number of MCMC samples to take (including burn-in).
                     integer. Number of burn-in samples. iterations > burnin necessarily.
    burnin
    lower_bounds
                      vector. Lower bounds for each data column.
    upper_bounds
                      vector. Upper bounds for each data column.
    ordinal_indicators
                      vector. Discrete values, one for each column, indicating which variables are
                     ordinal.
    list_of_ordinal_levels
                     vector. Discrete values, one for each column, indicating which variables are part
                      of the same ordinal group.
    categorical_indicators
                      vector. Each nominal d categorical variable must be broken down into d different
                      indicator variables. This vector marks which variables are such indicators.
    previous_states
                      vector. Starting regime vector, if known, of the same length as the number of
                      'days' in time points.
    previous_model_fits
                      rlist. Starting parameter fits corresponding to regime vector previous_states.
    linger_parameter
```

float. Prior parameter for Markov chain probability matrix. Larger = less likely

to change states.

4 bayeswatch

move_parameter float. Prior parameter for Markov chain probability matrix. Larger = more likely

to change states.

g.prior float in (0,1). Prior probability on edge inclusion for graph structure G.

set_G matrix. Starting graph structure, if known.

wishart_df_initial

integer (>= 3). Starting DF for G-Wishart prior.

lambda float. Parameter for NI-G-W prior, controls affect of precision sample on the

center sample.

g_sampling_distribution

matrix. Prior probability on edge inclusion if not uniform across G.

n.cores integer. Number of cores available for parallelization.

scaleMatrix matrix. Parameter for NI-G-W prior.

allow_for_mixture_models

logical. Whether or not method should fix mixture distributions to regimes.

dirichlet_prior

float. Parameter for the dirichlet process for fitting components in the mixture

component_truncation

integer. Maximum component allowed. Should be sufficiently large.

regime_truncation

integer. Maximum regime allowed. Should be sufficiently large.

hyperprior_b integer. Hyperprior on Wishart distribution fit to the scaleMatrix.

model_params_save_every

integer. How frequently to save model fits for the fault detection method.

simulation_iter

integer. Used for simulation studies. Deprecated value at package launch.

T2_window_size integer. Length of sliding window for Hotelling T2 pre-step. Used when an initial value for previous_states is not provided.

determining_p_cutoff

logical. Method for estimating the probability cutoff on the posterior distribution for determining change-points. Deprecated at package launch date.

prob_cutoff float. Changepoints are determined (for fault detection process) if posterior probability exceeds this value.

model_log_type character vector. The type of log (used to distinguish logfiles).

regime_selection_multiplicative_prior

float. Must be >=1. Gives additional probability to the most recent day for the selection of a new split point.

split_selection_multiplicative_prior

float.

is_initial_fit logical. True when there is no previously fit bayesWatch object fed through the algorithm..

verbose logical. Prints verbose model output for debugging when TRUE. It is highly recommended that you pipe this to a text file.

detect_faults 5

Value

bayesWatch object. A model fit for the analysis of posterior change-points and fault detection.

Examples

detect_faults

Determine the cause of a change-point.

Description

Prints out fault detection graphics given a bayesWatch object. This method can only be run if fault detection was run on the bayesWatch fit (if model_params_save_every < iterations).

Usage

```
detect_faults(regime_fit_object)
```

Arguments

```
regime_fit_object
```

bayesWatch object. Fit with main method of package.

Value

ggplot object. Fault detection graphs.

6 get_point_estimate

full_data

Simulated Data with Imposed Change-points.

Description

Data simulated using the BDgraph package. A change-point is imposed between days 5 and 6. The change only occurs in variables 3 and 4.

Usage

```
full_data
day_of_observations
day_dts
```

Format

'full_data' is a matrix, the latter two are vectors.

Details

'full_data' is a data frame with 1,000 rows and 5 columns. 'day_of_observations'; is a timestamp of each of 'full_data''s 1,000 rows. 'day_dts'; is a vector of unique elements from 'day_of_observations'...

Examples

```
full_data
day_of_observations
day_dts
```

get_point_estimate

Create an estimate on posterior distribution of change-points.

Description

Given a bayesWatch object and a probability cutoff, finds change-points.

Usage

```
get_point_estimate(regime_fit_object, prob_cutoff)
```

Arguments

```
{\tt regime\_fit\_object}
```

bayesWatch object. Fit with the bayesWatch method.

prob_cutoff

float in (0,1). Posterior probabilities above this cutoff will be considered changepoints.

plot.bayesWatch 7

Value

vector. Indicator values corresponding to change-point locations.

plot.bayesWatch	Print function for a bayesWatch object. Prints only the posterior change-point probabilities.
-----------------	---

Description

Print function for a bayesWatch object. Prints only the posterior change-point probabilities.

Arguments

V	howas Watch	shipet	Fit from	howacWotch	main method.
X	bayes watch (object.	ги пош	bayes watch	mam memou.

... Additional plotting arguments.

print.bayesWatch	Print function for a bayesWatch object. change-point probabilities.	Prints only the posterior
	• • •	

Description

Print function for a bayesWatch object. Prints only the posterior change-point probabilities.

Arguments

- x bayesWatch object. Fit from bayesWatch main method.
- .. Additional plotting arguments.

Index

```
* datasets
    full_data, 6

bayeswatch, 2

day_dts (full_data), 6
day_of_observations (full_data), 6
detect_faults, 5

full_data, 6

get_point_estimate, 6

plot.bayesWatch, 7
print.bayesWatch, 7
```